BUILDING AND REPAIRING ORGANS THROUGH BIOTECHNOLOGY: A NEW WORLD FOR INQUISITIVE MINDS

J. ASSOULINE, PH.D.

DIRECTOR OF THE BIOMEDTRIX LABORATORIES FOR TISSUE ENGINEERING AND NANOSCALE TECHNOLOGIES DEPARTMENT BIOMEDICAL ENGINEERING

Contact info: Office: 1133 Seaman Center Or CCAD 208C Tel: 319 353 5631, 335 5819 Jose-assouline@uiowa.edu assoulin@engineering.uiowa.edu

FRANKENSTEIN.

Mary Shelley in 1818

Book cover of Frankenstein (Edition 1831

How to make a Frankenstein

Depiction of Dr. **Faustus** and his **Homunculus**. The creation of the artificial being Homunculus in Goethe's Faust is a central part of the drama, by which Goethe reveals various transformational processes working in the human soul. In other words regeneration of a human for its parts.

Homunculi in sperm as drawn by N. Hartsoecker in 1695. Philosophical theory of heredity, claimed that either the egg or the sperm (exactly which was a contentious issue) contained a complete preformed individual called a homunculus. It was held the belief that the sperm was in fact a "little man" (homunculus) that was placed inside a woman for growth into a child

Salamander limb regeneration

Salamander limb regeneration

http://www.youtube.com/results?search_query=salamander+regeneration&aq=f

Bone Marrow Stem Cells (BMSC)

Live Stem Cardiomyocytes

• Heart stem

Examples of colonies of isolated right atrial (RA) cardiomyocytes, all of which exhibited spontaneous contraction

Stro1- Fetal BM Stromal Cells

Immortalized with Retroviral backbone with pLXSN-HPV-16 E6/E7. Co-infected with hTERT and GFP (Halbert 1992).

Stem cells phenotypes

>Dividing >Labeled

FITC-MSN 96hr

Fe -MSN 96hr

Electron Microscopic Evaluation of Msn nanoparticles

VIABILITY, intracellular interaction with subcellular organelles

MRI experiments HSC MSN-FITC and MSN-FE

In vivo tracking (MRI)

•Evidence for contralateral migration of particles

•Murine cerebral microinjections of 10% Eu-doped Gd2O3 (RD-147)

Additional ex vivo heart MRI

Lung evaluations

Comparison of CT scan parameters: Ferrite: Perfusion Fixed 01: 60.0 kVp, 200.0 mA Perfusion Fixed 02 (this is the specimen analyzed below): 50.0 kVp, 400.0 mA Perfusion Fixed 03: 60.0 kVp, 500.0 mA Gold: 50.0 kVp, 400.0 mA Bismuth: 50.0 kVp, 400.0 mA

CT lung

http://www.engineering.uiowa.edu/~assoulin/LungCTgold1/LungCTgold1.html

Ex-vivo cardiac ultrasound

• Heart injected with 20 μL 10% Eu-Gd_2O_3 @ 10 $\mu g/\mu L$ in left atrial wall

Pseudocolor highlighting injection site

Mounted in 1% agarose gel and scanned at 30 MHz

3d rendered ultrasound

In vivo mouse studies are forthcoming

MRI of In vivo transport, functionalized particles

- Glycine- and glutamine-functionalized particles in parietal lobe
- TEGO-functionalized particles in hippocampus
- MRI imaging 1, 24 and 48 hours after injection

Predictive DTI tractography compared with actual image, VOI surface shown

Parietal injection, predicted tractography via corpus callosum

1 hour post injection

Hippocampal injection, predicted tractography:

48 hours post injection

Rationale:

Stem cell regenerative medicine

O Potential uses

- Heart (myocardial infarction)
- Lungs (asthma, COPD, cystic fibrosis)
- Brain (Parkinson's, Alzheimer's, stroke)
- Fate of stem cell transplants
 - Immune rejection/clearance
 - Teratoma/errors in differentiation

 Therefore, there exists a need to trace stem cell transplants *in vivo* and non-invasively

Lees, J. G. et al. *Regen. Med.* **2007**, *2*, 289-300. Fong, C. Y. et al. *J. Cell. Biochem.* **2010**, *111*, 769-781.

Earlier hypotheses on the brain functions

The Phineas Cage's case: an example of personality disorder a great step in brain mapping of emotion

Evolution of Brains and Behaviors (part 1)

(inside view)

AREA OF THE BRAIN ESSENTIAL FOR HIGHER COGNITIVE FUNCTIONING

- Hippocampus (recent memory ; no retention of new facts)
- **Temporal and parietal lobes** (Language and emotions)
- Wernecke's and Broca's areas

(Language comprehension and speech)

Thalamus

(Relay for sensory and motor functions)

Amygdala

(Emotion, stress, storage of memory)

- Prefrontal, cingulate, occipital cortices
- Vermis of cerebellum
- Diffuse inherent memory storage capacity for all neurons

Important centers for emotion and memory part 1

•Amygdala – limbic structure involved in many brain functions, including emotion, learning and memory. It is part of a system that processes "reflexive" emotions like fear and anxiety.

•Cerebellum – governs movement.

•Cingulate gyrus – plays a role in processing conscious emotional experience. •Fornix – an arch-like structure that connects the hippocampus to other parts of the limbic system.

•Frontal lobe – helps control skilled muscle movements, mood, planning for the future, setting goals and judging priorities.

•Hippocampus – plays a significant role in the formation of long-term memories.

Limbic system – a group of interconnected structures that mediate emotions, learning and memory.

Methods and tools to study the brain

- the brain
 ElectroEncephaloGraphy (EEG) Technology
 - Angiography and Nuclear Magnetic Resonance (MRI)
 - PET/SPEC functional Imaging
 - Functional Magnetic Resonance Imaging (fMRI)
 - Microscopic techniques to visualize cells
 - Genetic and Informatics techniques

ElectroEncephaloGraphy (E) E Cohnology

-10 20 50

2D

Voltage

mannan

Single EEG record

New methods up to 256 channels

Functional Magnetic Resonance Imaging (fMRI)

Example:

Images result of a <u>complex visuo-motor</u> <u>task</u>, subject asked to press a button according to a target randomly appearing before him.

 1 mm thick axial, sagittal and coronal slices of the same 3D volume data set (functional data resolution 4 mm, anatomic data resolution 1 mm)

A New World of Science and Technology

RNA

Receptors

Morphometric Analyses of Neurons

Computer processed imaging

Synapses: Units of neuronal communication

FIG. 2-6. Ultrastructure of synapses. A. Axodendritic or axosomatic synapse. B. Axodendritic synapse, in which an end bulb is in synaptic relation with a dendritic spine. C. Axoaxonic synapse of the end bulb to end bulb type. See text for details.

FIG. 2-2. Semidiagrammatic representation of the constituents of a nerve cell.

duced by about 10-15 mV to

ow does neuro-transmission works?

Genes-Proteins Machinery

NeuroInformatics

- Combines various subdisciplines neuroscience and expertise informatics research to develop and apply advanced tools and approaches essential for a major advancement in understanding the structure and function of the brain.
- Hope is

Neuroinformatics research will lead to new digital and electronic tools for all domains of neuroscience research reflecting normal and diseased states across the life span.

Affymetrix GeneChip Arrays Whole genome evaluation: Differential gene expression

Intelligence at the Molecular level

cAMP responsive element binding protein (CREB)

Studies in a variety of species, indicate that CREB) family of transcription factors is critical for both the **long term stability** of changes in synaptic function, and for **long term memory** •Mutation of the CREB gene showed normal short-term memory, but abnormal long-term memory for a variety of tasks

•CREB is one of the determinants of the training schedules required for long term memory formation

Rational for Stem cell technology in Regenerative Medicine

- Maintain and replace parts of organs
- Correct functional deficits (diseased area)
- Develop new technologies to assess diseases remotely (non-invasively)
- Great potentials for new investigators with a cleaver minds